Destabilizing Domains Mediate Reversible Transgene Expression in the Brain

نویسندگان

  • Khalid Tai
  • Luis Quintino
  • Christina Isaksson
  • Fredrik Gussing
  • Cecilia Lundberg
چکیده

Regulating transgene expression in vivo by delivering oral drugs has been a long-time goal for the gene therapy field. A novel gene regulating system based on targeted proteasomal degradation has been recently developed. The system is based on a destabilizing domain (DD) of the Escherichia coli dihydrofolate reductase (DHFR) that directs fused proteins to proteasomal destruction. Creating YFP proteins fused to destabilizing domains enabled TMP based induction of YFP expression in the brain, whereas omission of TMP resulted in loss of YFP expression. Moreover, induction of YFP expression was dose dependent and at higher TMP dosages, induced YFP reached levels comparable to expression of unregulated transgene., Transgene expression could be reversibly regulated using the DD system. Importantly, no adverse effects of TMP treatment or expression of DD-fusion proteins in the brain were observed. To show proof of concept that destabilizing domains derived from DHFR could be used with a biologically active molecule, DD were fused to GDNF, which is a potent neurotrophic factor of dopamine neurons. N-terminal placement of the DD resulted in TMP-regulated release of biologically active GDNF. Our findings suggest that TMP-regulated destabilizing domains can afford transgene regulation in the brain. The fact that GDNF could be regulated is very promising for developing future gene therapies (e.g. for Parkinson's disease) and should be further investigated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid and Tunable Control of Protein Stability in Caenorhabditis elegans Using a Small Molecule

Destabilizing domains are conditionally unstable protein domains that can be fused to a protein of interest resulting in degradation of the fusion protein in the absence of stabilizing ligand. These engineered protein domains enable rapid, reversible and dose-dependent control of protein expression levels in cultured cells and in vivo. To broaden the scope of this technology, we have engineered...

متن کامل

Reversible overexpression of bace1-cleaved neuregulin-1 N-terminal fragment induces schizophrenia-like phenotypes in mice.

BACKGROUND Neuregulin-1 (Nrg1) is a pleiotropic signaling molecule that regulates neural development, and mutation of Nrg1 is a risk factor for schizophrenia. Cleavage of type I β1 Nrg1 isoform by Bace1 releases a secreted N-terminal fragment (Nrg1-ntfβ), which can bind to a cognate ErbB receptor to activate the specific signaling cascade. This study aimed to determine whether increased express...

متن کامل

Controlled re-activation of epigenetically silenced Tet promoter-driven transgene expression by targeted demethylation

Faithful expression of transgenes in cell cultures and mice is often challenged by locus dependent epigenetic silencing. We investigated silencing of Tet-controlled expression cassettes within the mouse ROSA26 locus. We observed pronounced DNA methylation of the Tet promoter concomitant with loss of expression in mES cells as well as in differentiated cells and transgenic animals. Strikingly, t...

متن کامل

Inducible and neuron-specific gene expression in the adult mouse brain with the rtTA2S-M2 system.

To achieve inducible and reversible gene expression in the adult mouse brain, we exploited an improved version of the tetracycline-controlled transactivator-based system (rtTA2(S)-M2, rtTA2 hereafter) and combined it with the forebrain-specific CaMKIIalpha promoter. Several independent lines of transgenic mice carrying the CaMKIIalpha promoter-rtTA2 gene were generated and examined for anatomic...

متن کامل

The Effects of WW2/WW3 Domains of Smurf2 Molecule on CD4+CD25+/CD4+ Proportion in Spleen of 4T1 Tumor Bearing BALB/c Mice

Background: TGF-β has long been considered as the main inducer of Tregs in tumor microenvironment and is the reason for the aberrant number of Tregs in tumor-bearing individuals. Recently, it has been suggested that the enzyme arginase I is able to mediate the induction of Tregs in a TGF-β-independent fashion. The recombinant WW2/WW3 domains from smad ubiquitination regulatory factor 2 molecule...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012